H(t)=-16t^2+56t+512

Simple and best practice solution for H(t)=-16t^2+56t+512 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+56t+512 equation:



(H)=-16H^2+56H+512
We move all terms to the left:
(H)-(-16H^2+56H+512)=0
We get rid of parentheses
16H^2-56H+H-512=0
We add all the numbers together, and all the variables
16H^2-55H-512=0
a = 16; b = -55; c = -512;
Δ = b2-4ac
Δ = -552-4·16·(-512)
Δ = 35793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{35793}=\sqrt{9*3977}=\sqrt{9}*\sqrt{3977}=3\sqrt{3977}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-3\sqrt{3977}}{2*16}=\frac{55-3\sqrt{3977}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+3\sqrt{3977}}{2*16}=\frac{55+3\sqrt{3977}}{32} $

See similar equations:

| 33/4=1/8+r | | 2^x=5^x^2 | | 3x+8=2x+48=180 | | 3x+(3x-10)=14x= | | 225/u-10=5 | | 20(22.5-1.5y)+3y=13y | | 144=0+12x | | -5⁄2x+5=25 | | (7x-7)=(5x+3( | | 5=s/10-5 | | 11+36/z=17 | | (2/3)(3x-1)=(3/2)(2x-3) | | 3x2^−x−7=2x^2+5 | | (15m-9)+(2m+19)=180 | | 9y-40=51 | | 3p^2-18p=9p-56 | | 2=s/12-3 | | 8+18/w=14 | | Y=-3/5x+75 | | 31-y=201 | | -0.25(n+5)=2 | | 6(x+3)-5=2x+4(2+x) | | 150-x-2x=1202x | | (2/3)(3k-1)=(3/2)(2k-3) | | 5(3x+7)=-44+34 | | 9z-14=2z | | z+5=6/2 | | -6/7+n=4/5 | | t-2/3t+7/8=-5/3(t-5/8) | | 2/11+y=-9/11 | | 5n+1=-24 | | 45+w=10w |

Equations solver categories